一. DMA原理:
DMA(Direct Memory Access,直接内存存取) 是所有现代电脑的重要特色,它允许不同速度的硬件装置来沟通,而不需要依于 CPU 的大量 中断 负载。否则,CPU 需要从 来源 把每一片段的资料复制到 暂存器,然后把它们再次写回到新的地方。在这个时间中,CPU 对于其他的工作来说就无法使用。
DMA 传输将数据从一个地址空间复制到另外一个地址空间。当 CPU 初始化这个传输动作,传输动作本身是由 DMA 控制器 来实行和完成。典型的例子就是移动一个外部内存的区块到芯片内部更快的内存区。像是这样的操作并没有让处理器工作拖延,反而可以被重新排程去处理其他的工作。
二.STM32使用DMA
1.DMA的设置:
要配置的有DMA传输通道选择,传输的成员和方向、普通模式还是循环模式等等。
void DMA_Configuration(void){ DMA_InitTypeDef DMA_InitStructure; //DMA设置: //设置DMA源:内存地址&串口数据寄存器地址 //方向:内存-->外设 //每次传输位:8bit //传输大小DMA_BufferSize=SENDBUFF_SIZE //地址自增模式:外设地址不增,内存地址自增1 //DMA模式:一次传输,非循环 //优先级:中 DMA_DeInit(DMA1_Channel4);//串口1的DMA传输通道是通道4 DMA_InitStructure.DMA_PeripheralBaseAddr = USART1_DR_Base; DMA_InitStructure.DMA_MemoryBaseAddr = (u32)SendBuff; //DMA访问的数据地址 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;//外设作为DMA的目的端 DMA_InitStructure.DMA_BufferSize = SENDBUFF_SIZE;//传输数据大小 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;//外设地址不增加 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;//内存地址自增1 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
//DMA_Mode_Normal(只传送一次), DMA_Mode_Circular (循环传送) DMA_InitStructure.DMA_Priority = DMA_Priority_Medium;//(DMA传送优先级为中等) DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; DMA_Init(DMA1_Channel4, &DMA_InitStructure);}
注:
1、传输通道:通过查表,串口1的发送对应的是DMA的通道4,所以此处选择通道4.
2、DMA传输方式:
(1) DMA_Mode_Normal,正常模式,当一次DMA数据传输完后,停止DMA传送,对于上例而言,就是DMA_PeripheralDataSize_Byte个字节的传送完成后,就停止传送。
(2) DMA_Mode_Circular
循环模式,当传输完一次后,重新接着传送,永不停息。
2、外设的DMA方式设置
将串口1设置成DMA模式:
USART_DMACmd(USART1, USART_DMAReq_Tx, ENABLE);
3、待传输数据的定义和初始化
#define SENDBUFF_SIZE 10240 vu8 SendBuff[SENDBUFF_SIZE];
for(i=0;i<SENDBUFF_SIZE;i++) { SendBuff[i] = i%10+'0'; } 4、开始DMA传输(使能对应的DMA通道)DMA_Cmd(DMA1_Channel4, ENABLE);
5、DMA传输的完成
while(DMA_GetFlagStatus(DMA1_FLAG_TC4) == RESET) { LED_1_REV; //LED改变亮灭 Delay(); //浪费时间 }
当传输完成后,就会跳出上面的死循环。
下面是九九的一个例程,测试过,可以运行!
/****************************************************************************** * 本文件实现串口发送功能(通过重构putchar函数,调用printf;或者USART_SendData() * 这里是一个用串口实现大量数据传输的例子,使用了DMA模块进行内存到USART的传输 * 每当USART的发送缓冲区空时,USART模块产生一个DMA事件, * 此时DMA模块响应该事件,自动从预先定义好的发送缓冲区中拿出下一个字节送给USART * 整个过程无需用户程序干预,用户只需启动DMA传输传输即可 * 在仿真器调试时,可以在数据传输过程中暂停运行,此时DMA模块并没有停止 * 串口依然发送,表明DMA传输是一个独立的过程。 * 同时开启接收中断,在串口中断中将数据存入缓冲区,在main主循环中处理 * 作者:jjldc(九九) * 代码硬件基于万利199元的EK-STM32F开发板,CPU=STM32F103VBT6 *******************************************************************************/
/* Includes ------------------------------------------------------------------*/ #include "stm32f10x_lib.h" #include "stdio.h"
/* Private typedef -----------------------------------------------------------*//* Private define ------------------------------------------------------------*/ #define USART1_DR_Base 0x40013804
/* Private macro -------------------------------------------------------------*//* Private variables ---------------------------------------------------------*/#define SENDBUFF_SIZE 10240 vu8 SendBuff[SENDBUFF_SIZE]; vu8 RecvBuff[10]; vu8 recv_ptr;
/* Private function prototypes -----------------------------------------------*/ void RCC_Configuration(void); void GPIO_Configuration(void); void NVIC_Configuration(void); void DMA_Configuration(void); void USART1_Configuration(void);
int fputc(int ch, FILE *f); void Delay(void);
/* Private functions ---------------------------------------------------------*//******************************************************************************** Function Name : main* Description : Main program.* Input : None* Output : None* Return : None*******************************************************************************/int main(void) { u16 i; #ifdef DEBUG debug(); #endif recv_ptr = 0; RCC_Configuration(); GPIO_Configuration(); NVIC_Configuration(); DMA_Configuration(); USART1_Configuration(); printf("\r\nSystem Start...\r\n"); printf("Initialling SendBuff... \r\n"); for(i=0;i<SENDBUFF_SIZE;i++) { SendBuff[i] = i%10+'0'; } printf("Initial success!\r\nWaiting for transmission...\r\n"); //发送去数据已经准备好,按下按键即开始传输 while(GPIO_ReadInputDataBit(GPIOD, GPIO_Pin_3)); printf("Start DMA transmission!\r\n"); //这里是开始DMA传输前的一些准备工作,将USART1模块设置成DMA方式工作 USART_DMACmd(USART1, USART_DMAReq_Tx, ENABLE); //开始一次DMA传输! DMA_Cmd(DMA1_Channel4, ENABLE); //等待DMA传输完成,此时我们来做另外一些事,点灯 //实际应用中,传输数据期间,可以执行另外的任务 while(DMA_GetFlagStatus(DMA1_FLAG_TC4) == RESET) { Delay(); //浪费时间 } //DMA传输结束后,自动关闭了DMA通道,而无需手动关闭 //下面的语句被注释 //DMA_Cmd(DMA1_Channel4, DISABLE); printf("\r\nDMA transmission successful!\r\n");
/* Infinite loop */ while (1) { } }
/******************************************************************************** Function Name : 重定义系统putchar函数int fputc(int ch, FILE *f)* Description : 串口发一个字节* Input : int ch, FILE *f* Output : * Return : int ch* 这个是使用printf的关键*******************************************************************************/int fputc(int ch, FILE *f) { //USART_SendData(USART1, (u8) ch); USART1->DR = (u8) ch; /* Loop until the end of transmission */ while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET) { }
return ch; }
/******************************************************************************** Function Name : Delay* Description : 延时函数* Input : None* Output : None* Return : None*******************************************************************************/void Delay(void) { u32 i; for(i=0;i<0xF0000;i++); return; }
/******************************************************************************** Function Name : RCC_Configuration* Description : 系统时钟设置* Input : None* Output : None* Return : None*******************************************************************************/void RCC_Configuration(void) { ErrorStatus HSEStartUpStatus;
//使能外部晶振 RCC_HSEConfig(RCC_HSE_ON); //等待外部晶振稳定 HSEStartUpStatus = RCC_WaitForHSEStartUp(); //如果外部晶振启动成功,则进行下一步操作 if(HSEStartUpStatus==SUCCESS) { //设置HCLK(AHB时钟)=SYSCLK RCC_HCLKConfig(RCC_SYSCLK_Div1);
//PCLK1(APB1) = HCLK/2 RCC_PCLK1Config(RCC_HCLK_Div2);
//PCLK2(APB2) = HCLK RCC_PCLK2Config(RCC_HCLK_Div1);
//FLASH时序控制 //推荐值:SYSCLK = 0~24MHz Latency=0 // SYSCLK = 24~48MHz Latency=1 // SYSCLK = 48~72MHz Latency=2 FLASH_SetLatency(FLASH_Latency_2); //开启FLASH预取指功能 FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);
//PLL设置 SYSCLK/1 * 9 = 8*1*9 = 72MHz RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); //启动PLL RCC_PLLCmd(ENABLE); //等待PLL稳定 while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET); //系统时钟SYSCLK来自PLL输出 RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); //切换时钟后等待系统时钟稳定 while(RCC_GetSYSCLKSource()!=0x08);
/* //设置系统SYSCLK时钟为HSE输入 RCC_SYSCLKConfig(RCC_SYSCLKSource_HSE); //等待时钟切换成功 while(RCC_GetSYSCLKSource() != 0x04); */ }
//下面是给各模块开启时钟 //启动GPIO RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | \ RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOD,\ ENABLE); //启动AFIO RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE); //启动USART1 RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE); //启动DMA时钟 RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); }
/******************************************************************************** Function Name : GPIO_Configuration* Description : GPIO设置* Input : None* Output : None* Return : None*******************************************************************************/void GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure;
//PC口4567脚设置GPIO输出,推挽 2M GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_Init(GPIOC, &GPIO_InitStructure);
//KEY2 KEY3 JOYKEY //位于PD口的3 4 11-15脚,使能设置为输入 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_11 | GPIO_Pin_12 |\ GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOD, &GPIO_InitStructure);
//USART1_TX GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); //USART1_RX GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOA, &GPIO_InitStructure);
}
/******************************************************************************** Function Name : NVIC_Configuration* Description : NVIC设置* Input : None* Output : None* Return : None*******************************************************************************/void NVIC_Configuration(void) { NVIC_InitTypeDef NVIC_InitStructure;
#ifdef VECT_TAB_RAM // Set the Vector Table base location at 0x20000000 NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0); #else /* VECT_TAB_FLASH */ // Set the Vector Table base location at 0x08000000 NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0); #endif
//设置NVIC优先级分组为Group2:0-3抢占式优先级,0-3的响应式优先级 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //串口接收中断打开 NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQChannel; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); }
/******************************************************************************** Function Name : USART1_Configuration* Description : NUSART1设置* Input : None* Output : None* Return : None*******************************************************************************/void USART1_Configuration(void) { USART_InitTypeDef USART_InitStructure; USART_InitStructure.USART_BaudRate = 9600; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx; USART_Init(USART1, &USART_InitStructure); USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); USART_Cmd(USART1, ENABLE); }
void DMA_Configuration(void) { DMA_InitTypeDef DMA_InitStructure; //DMA设置: //设置DMA源:内存地址&串口数据寄存器地址 //方向:内存-->外设 //每次传输位:8bit //传输大小DMA_BufferSize=SENDBUFF_SIZE //地址自增模式:外设地址不增,内存地址自增1 //DMA模式:一次传输,非循环 //优先级:中 DMA_DeInit(DMA1_Channel4);//串口1的DMA传输通道是通道4 DMA_InitStructure.DMA_PeripheralBaseAddr = USART1_DR_Base; DMA_InitStructure.DMA_MemoryBaseAddr = (u32)SendBuff; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;//外设作为DMA的目的端 DMA_InitStructure.DMA_BufferSize = SENDBUFF_SIZE;//传输大小 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;//外设地址不增加 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;//内存地址自增1 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;//DMA_Mode_Normal(只传送一次), DMA_Mode_Circular (不停地传送) DMA_InitStructure.DMA_Priority = DMA_Priority_Medium;//(DMA传送优先级为中等) DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; DMA_Init(DMA1_Channel4, &DMA_InitStructure); }